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Abstract. In this article, we study the Leader Election Problem in the
Signal-to-Interference-plus-Noise-Ratio (SINR) model where nodes can
adjust their transmission power. We show that in this setting it is pos-
sible to solve the leader election problem in two communication rounds,
with high probability. Previously, it was known that Ω(logn) rounds
were sufficient and necessary when using uniform power, where n is the
number of nodes in the network.

We then examine how much power control is needed to achieve fast
leader election. We show that any 2-round leader election algorithm in
the SINR model running correctly w.h.p. requires a power range 2Ω(n)

even when n is known. We match this with an algorithm that uses power

range 2Õ(n), when n is known and 2Õ(n1.5), when n is not known. We
also explore tradeoffs between time and power used, and show that to
elect a leader in t rounds, a power range exp(n1/Θ(t)) is sufficient and
necessary.

Keywords: SINR, leader election, power control, capture effect

1 Introduction

In this article we discuss what we can accomplish in a Signal-to-Interference-
plus-Noise-Ratio (SINR) network using power control, the ability of nodes to
transmit with variable transmission power, and the capture effect, a property of
SINR networks, where a transmission can be successful while other transmissions
within the communication range occur in the same round.

We study the leader election problem as a vehicle to explore this frontier.
Leader election, the problem of determining a unique leader among the nodes in a
network, is one of the oldest and most studied problems in distributed computing.
It provides a strong form of breaking symmetry within radio networks in an
initially unknown system, and is frequently used as a preliminary step in more
complex communication tasks.

? Magnús M. Halldórsson is supported by Icelandic Research Fund grants 152679-05
and 174484-05. Stephan Holzer is supported by AFOSR FA9550-13-1-0042. Evangelia
Anna Markatou is supported by grants NSF CCF-1461559 and NSF CCF-0939370.



2

The leader election problem was originally introduced in the 1970s, with the
publication of the ALOHA radio network paper [1]. In the following years, many
variations of the leader election problem have been extensively studied under a
variety of models and algorithmic constraints such as with collision detection in
the multiple access channel model [12], no collision detection in the SINR model
[7], or under a colored graph in the LOCAL model [6].

We treat the leader election problem in SINR networks, first studied by Gupta
and Kumar [9] for algorithmic purposes. In the SINR model, nodes operate in
synchronous rounds. In each round a node either broadcasts a message to its
neighbors or listens. A node v receives a message from node u depending on
the distance between u and v, the transmission power of u, and the interference
generated by other broadcasting nodes, as defined in Section 2.

The best solution known for this problem in an SINR network achieves
O(log n) runtime with high probability (w.h.p.) using uniform transmission power
[7]. In the classical radio network model, the leader election problem requires
Θ(log2 n) rounds w.h.p. [11]. Fineman et al. [7] show that O(log n) rounds suf-
fice to elect a leader in SINR networks without power control, and show that
Ω(log n) are also necessary when using uniform power. They suggest that im-
proved bounds may be possible using power control. Indeed, we show that power
control can provide the ultimate speedup.

Our Contributions: We present an algorithm that solves the leader election
problem in two rounds w.h.p.. We also present a multi-round leader election
algorithm that uses limited transmission power. Our work is complemented by
nearly matching lower bounds on the transmission power range for both two
round and multi-round leader election algorithms.

1.1 Related Work

The leader election problem was first studied with the publication of the ALOHA
radio network in the 1970s [1], and plenty of work considering this problem was
published in the following decade. Gallager [8] presents a good survey of early
work on leader election. Starting in the 1990s there was an increased interest
in the radio network models [4]. Under radio network models concurrent trans-
missions are lost due to collisions, and nodes do not know whether or not their
message was successfully received. In this model, the leader election problem can
be solved in Θ(log2 n) rounds w.h.p. [11] where n is the number of nodes in the
network. This bound can be improved to Θ(log n) w.h.p. assuming that nodes
can detect collisions [11], and to O(log nu) expected rounds assuming an upper
bound nu of n [2].

In the beginning of the new millennium came a renewed interest in fading
radio networks, captured with the SINR model, which claim to capture the real
behavior of systems better than previous models, as they take interference into
account in a more realistic way. Moscibroda and Wattenhofer [10] showed that
algorithms on the fading radio networks model can achieve better runtimes than
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algorithms for the radio networks model on certain problems, as SINR allows
for better spatial reuse.

In the SINR model the most efficient currently published leader election pro-
tocol is by Fineman et al. [7]. The authors present an algorithm that achieves
O(log n+ logR) runtime w.h.p. in a single-hop network using uniform transmis-
sion power, where n is the number of nodes and R = O(poly(n)) is the ratio
between the longest and shortest link. Fineman et al. suggest that it may be
possible to achieve better performance using power control. Indeed, for prob-
lems like link scheduling and connectivity, power control has been shown to give
much better performance [10]. Power control has also been used in the SINR
setting to solve the link scheduling problem while conserving energy, e.g. [3], [5].

To our knowledge, there has been no published work using power control to
optimize the runtime of the leader election problem, or examining the trade-offs
between the required communication complexity and power range of a leader
election algorithm.

2 Model and Problem Statement

Let V be a set of n nodes, deployed in a single-hop network, that represent
wireless devices. Every node can communicate with any other node using trans-
mission power P , in absence of interference from other nodes. Time is divided
into synchronous rounds. In each round, a node v can either transmit a message
of size O(log n) with some power Pv, or listen. Node v ∈ V can receive a message
transmitted by node u ∈ V , iff v is listening and

SINR(u, v, I) =

Pu
d(u,v)α

N +
∑
w∈I

Pw
d(w,v)α

≥ β, (1)

where I is the set of other nodes transmitting simultaneously. d(u, v) is the
distance between nodes v and u, and α, β,N are constants. Specifically, α is
the path-loss exponent, N is the non-zero ambient noise, and β is a hardware-
dependent minimum SINR threshold required for a successful message reception.
Our algorithms work for any β > 0, while the lower bounds use β ≥ 2.

In this paper, we consider the leader election problem.

Problem 1 (Leader Election Problem). Given n nodes in a network, eventually
elect exactly one node (called the leader), with all nodes knowing whether or not
they were elected to be the leader.

We denote by R the ratio of the longest to shortest distance between any
two nodes in the network. Similar to [7], we assume that R is bounded by a
polynomial in n, R ≤ nc, for some c ∈ N. Let γ be a constant such that γ ≥
max(1, cα + 1 + log β). We assume that the nodes know or can infer (an upper
bound on) γ.
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The Õ-notation omits logarithmic factors. All logs are base 2. We consider
that an event happens with high probability (w.h.p.) if it happens with proba-
bility greater than 1− 1/n.

We need the following version of Chernoff bounds.

Theorem 1 (Chernoff Bound). Let X1, X2, . . . , Xn be independent Bernoulli
random variables and X =

∑n
i=1Xi. Then, Pr[X ≥ 2 · E[X]] ≤ 2−0.55E[X].

3 2-Round Leader Election Algorithm

In this section, we present a 2-round leader election algorithm. First, we give
some key ideas behind our algorithm. Then, we present a 2-round leader elec-
tion algorithm that requires no knowledge of n, followed by the analysis.

3.1 The Essence of Our Algorithm

Below we present a high level description of the key ideas behind our algorithm.

(i) Geometric random variable: The nodes use a geometric random vari-
able k to count the tails flipped in a sequence of coin flips before the first
heads is flipped. This geometric random variable allows some nodes to ap-
proximate n with no prior knowledge of the instance. More specifically, at
least one and at most 8 log n nodes flip a coin more than log n− log log n−2
times.

(ii) Random IDs: Each node chooses an ID (identification number) randomly
using k. The geometric random variable k ensures that exactly one node
v holds the maximum ID, which allows node v to break the symmetry of
the network and stand out as the leader.

(iii) The loudest node wins: Each broadcasting node v determines its trans-
mission power by evaluating power function f(IDv) = P ·IDγIDv

v using its
identification number, IDv. Transmission power function f ensures that all
listening nodes receive a message exactly from the node with the largest
ID, as long as that ID is unique (see (ii)).

(iv) Feedback: In order to inform all nodes of the leader node v, we split the set
of nodes V into listeners and competitors. The competitors compete for the
leader position during the first round. The listeners inform the competitors
of the winner during the second round. Both rounds use the same protocol
with different message contents.

In summary, a geometric random variable allows the nodes to approximate
n with no prior knowledge of the instance, random IDs ensure that the node
v with the maximum ID stands out, arbitrary transmission power allows the
loudest node v to inform the other nodes it is the leader, and feedback makes
sure that all nodes know who the leader node is.
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3.2 Leader Election Algorithm

The algorithm proceeds as follows. Initially, each node v flips a coin (a Bernoulli
random variable) to determine its role, which is a competitor if heads are flipped,
and listener if tails. It then computes a geometric random variable (r.v.) kv,
which counts the tails flipped in a sequence of coin flips before the first heads
is flipped. The ID of the node, IDv, is an integer selected uniformly at random
from the range [J, 2 · J ], where J = g(kv) := 2kvk4v. Finally, the power Pv that v
uses for broadcast is given by f(IDv) := P · IDγIDv

v , where P is the minimum
power needed to reach all nodes in the network (overcoming the ambient noise).

During round 1, competitors transmit their ID using the assigned power Pv,
which is to be received by the listeners. In round 2, the roles are reversed, as the
listeners report back the ID of the purported leader that they received.

We shall argue that, with high probability, a unique competitor succeeds in
transmitting to all the listeners, and a unique listener succeeds in reporting back
to all the competitors. The leader is then that successful competitor.

Algorithm 1 2-Round Leader Election Algorithm for node v

1: Rolev, a boolean Bernoulli( 1
2
) random variable {‘competitor’ if heads, ’listener’ if

tails}
2: kv, a Geometric( 1

2
) random variable, kv ∈ Z≥0

3: IDv, chosen uniformly at random from [J, 2 · J)], where J = g(kv) := 2kvk4v,
IDv ∈ Z≥0

4: Pv, the transmission power, Pv = f(IDv) := P · (IDv)γIDv , Pv ∈ Z≥0

5: Leaderv, a string denoting the identity of the leader, initially empty
6: Round 1:
7: if Rolev = competitor then
8: Broadcast IDv using power Pv
9: else

10: Receive Leaderv
11: Round 2:
12: if Rolev = competitor then
13: Receive Leaderv
14: else
15: Broadcast Leaderv using power Pv

3.3 Analysis

We proceed by showing that the highest power used by a competitor is sufficient
to overpower all the other competitors, ensuring that this competitor is heard
by all the listeners. Identical arguments hold for the reporting back in round 2.

To this end, we first show that there is a competitor whose geometric r.v. is
nearly log n, and at most a logarithmic number of competitors have that large
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value. We then show that all the O(log n) IDs at the high end of the spectrum
are unique, i.e., selected by a single node. The difference in power used by nodes
with different ID ensures that the competitor with highest ID will overpower all
the other competitors and be heard by all the listeners.

Lemma 1. Let k1 := log n− log log n− 2. For at least one and at most 8 log n
competitors v does it hold that kv ≥ k1, with probability greater than 1− 1

8n .

Proof. Let t = dk1e = dlog n − log log n − 2e. Let Av be the event that a given
node v is a competitor and has kv ≥ t. The probability of Av is Pr[Av] = 2−1−t =
2−1−dk1e. Thus,

2 log n

n
= 2−1−k1 ≤ Pr[Av] ≤ 2−k1 =

4 log n

n
.

The probability that no node satisfies Av is then at most

Pr

[∧
v

Av

]
≤
(

1− 2 log n

n

)n
≤ e−2 logn ≤ n−2.88 ≤ 1

16n
,

for n sufficiently large, establishing the first part of the claim.
Let X be the number of nodes v for which Av holds. Then 2 log n ≤ E[X] ≤

4 log n and by Chernoff bound (Thm. 1),

Pr[X ≥ 8 log n] ≤ Pr[X ≥ 2E[X]] ≤ 2−0.55E[X] < 2−2.2 logn = n−2.2 ≤ 1

16n
,

for n large enough. I.e., at most 8 log n nodes satisfy Av, with probability greater
than 1− 1

16n .
Combined, with probability at least 1− 1

8n , both of these claimed events hold.

The range from which the IDs are chosen is [J, 2J ], for J ≥ g(k1), with high

probability. Observe that g(k1) = 2k1k41 ≥
n·log3 n

8 , for sufficiently large values of
n.

Lemma 2. A sole competitor receives the highest ID with probability greater
than 1− 1

8n , given that at least one node calculated kv ≥ k1.

Proof. The ranges of IDs assigned to nodes of different kv values are disjoint.
The competitor receiving the highest ID will therefore necessarily be one with a
highest kv value, which we denote by K. Let Z be the set of competitors with
kv = K ≥ k1(= log n− log log n−2). By Lemma 1, Z is non-empty and contains
at most 8 log n nodes.

The probability that a given pair of nodes in Z receive the same ID is inversely
proportional to the range of IDs sampled from, or 1/J ≤ 1

g(k1)
≤ 8

n·log3 n
. The

probability that some pair of nodes in Z are assigned the same ID is then, by
the union bound, at most
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(|Z|
2

)
J
≤ (8 log n)2

n·log3 n
8

=
512

n log n
<

1

8n
,

for large enough n. In particular, all nodes in Z receive different IDs with prob-
ability greater than 1− 1

8n .

The highest ID received, IDw, is at least g(k1) ≥ n, for sufficiently large
values of n.

Lemma 3. If a sole competitor receives the highest ID, then its transmission is
received by all the listeners.

Proof. Let w be the sole competitor with the highest ID. For any other com-
petitor v it then holds that

Pw
Pv
≥ f(IDw)

f(IDw − 1)
≥ IDγ

w ≥ nγ ≥ βncα+1 . (2)

Let u be a listener. We bound the noise and interference received by u in
terms of the signal Su := Pw/d(w, u)α it receives from w. Recall that d(w, u) ≤
R · d(v, u) ≤ nc · d(v, u), and thus d(w, u)α ≤ ncα · d(v, u)α, for any competitor
v. Hence, applying (2), the interference received from a competitor v is bounded
by

Iv :=
Pv

d(v, u)α
≤ Pw · ncα

βncα+1 · d(w, u)α
=
Su
βn

. (3)

The definition of minimum power P ensures that P/d(w,u)α

N ≥ β. Thus, we can
use (2) to bound the noise term by

N ≤ P

d(w, u)α · β
≤ Pw
d(w, u)α · nγ · β

=
Su
βnγ

≤ Su
βn

. (4)

Combining (3) and (4), we get that the SINR of w’s signal at receiver u is
bounded below by

Su
N +

∑
v∈X Iv

≥ βn

1 + |X|
≥ β ,

where X is the set of competitors other than w. Thus, w overpowers all other
competitors at all the listeners.

Theorem 2. The 2-round leader election algorithm terminates with all nodes
agreeing on a common leader, w.h.p.

Proof. Adding up the error probabilities of Lemmas 1 and 2, we find that a
sole competitor w receives the highest ID, with probability at least 1 − 1

4n . By
Lemma 3, w then successfully informs all the receivers. All three lemmas work
identically for the reporting process in round 2. Hence, with probability at least
1− 1

2n , the algorithm succeeds.
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Remark 1. Leader election can be achieved in a single round if simultaneous
transmission and reception is possible. Such full-duplex radios operate by sub-
tracting the transmitted signal from the received one. While they are still rare,
being hard to implement, such technology has been progressing significantly in
recent years and may well become a commodity feature. With full-duplex, our
arguments apply unchanged to the success of reception by the other competitors,
thus succeeding after only a single round.

4 Range of Power Needed For a 2-Round Leader Election

Power control is the essential feature that allows our algorithms to work. That
begs the question how much power control is needed?

We say that an algorithm uses a power range X if the powers assigned fall in
the range [P, . . . ,X · P ]. The basic question is then how the power range must
grow as a function of n for leader election to work correctly.

4.1 Upper Bound

Theorem 3. Our 2-round leader election algorithm can be made to work cor-

rectly with a power range of 2Õ(n1.5), w.h.p.

Proof. The algorithm as is may select power assignments inducing a range of

2Õ(n2), since kv is no larger than 2 log n+2, with probability greater than 1− 1
2n .

However, if the range is bounded, we may assume that the nodes know the upper
bound of the range, Pmax. Thus, the algorithm would automatically truncate the
power assigned to be at most Pmax. We observe that this truncation can occur
for at most one vertex, for the node with the highest ID to succeed. Namely, the
probability that two or more nodes select a kv value greater than 1.5 log n is at
most (

n

2

)
2−3 logn ≤ 1

2n
.

The bound on the maximum power now follows immediately.

If nodes know n, we can work with a smaller power range as follows: We can
first sample the nodes with probability Θ(log n/n), and have each selected node
select ID uniformly at random from the range [J, 2J ], where J = n log2 n. The
power used is f(IDv) as before, and the arguments are otherwise the same. This

results in a power range of at most 2(n log2 n)n log2 n = 2Õ(n).

Proposition 1. When nodes know n, a power range of 2Õ(n) suffices.

4.2 Lower bound

We show that an exponential-size power range is actually necessary for any leader
election protocol running in (at most) two rounds.
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Theorem 4. Every 2-round leader election algorithm in the SINR model run-
ning correctly w.h.p. requires a power range 2Ω(n). This holds even if the nodes
know n, the number of nodes in the network, and if the nodes are located in a
unit metric space (where all distances are equal).

Proof. Consider n nodes located in a unit metric. In the unit metric, either a
single message is received by all the listeners or none of them hear anything
(assuming β ≥ 1). Since the nodes don’t operate full-duplex, two rounds are
needed to inform the transmitting nodes of the winner, and the winner must be
heard by all listeners in the first round.

We divide the available range of power into subranges, each within factor 2.
Namely, if Pmax is the maximum power available, then the i-th highest subrange
is [Pmax/2

i, Pmax/2
i−1]. If the highest range used is used by two or more nodes,

then the algorithm fails (assuming β ≥ 2). We shall bound from below the
probability that exactly two nodes use the highest subrange in use; this is clearly
a lower bound on the failure probability of the algorithm.

Let Xv
i be the event that node v transmits in the first round using the i-th

highest subrange. Since the nodes are identical, the same probability holds for
them all, so let pi = Pr[Xv

i ]. Observe that the probability that no node transmits
in the round is at least 1− n

∑
i pi, and since that can hold with probability at

most 1/n, it follows that
∑
i pi ≥

1
n (1 − 1

n ). Let q be the largest number such
that

q∑
i=1

pi ≤
1

2n
. (5)

So, a subrange of rank at least q + 1 is in use.
Let Ai be the event that at least two nodes use the i-th highest subrange, Bi

be the event that no node transmits at subranges 1, 2, . . . , i−1, and Ci = Ai∩Bi
be the event that both Ai and Bi occur, for i = 1, 2, . . .. Then, C =

⋃
i Ci is

the event that at least two nodes use the highest subrange in use. Observe that
Pr[Ai|Bi] ≥ Pr[Ai], since the non-use of the i− 1 highest subranges only makes
the event Ai more likely. Then,

Pr[Ci] = Pr[Ai ∩Bi] = Pr[Ai|Bi] Pr[Bi] ≥ Pr[Ai] Pr[Bi] .

We bound the probability of Ai, i ≤ q, by the first term of the binomial expan-
sion:

Pr[Ai] >

(
n

2

)
p2i (1− pi)n−2 >

n2

3
p2i

(
1− 1

2n

)n−2
>
n2

3e
p2i .

Also, applying (5),

Pr[Bi] ≥ 1− n
i−1∑
j=1

pi ≥
1

2
.

Observe that the Ci’s are mutually exclusive and apply the Cauchy-Schwarz
inequality followed by (5) to obtain:

Pr[C] ≥
q∑
i=1

Pr[Ci] ≥
n2

3e

q∑
i=1

p2i ·
1

2
≥ n2

6e

(
∑q
i=1 pi)

2

q
≥ 1

24e · q
.
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The algorithm fails when C holds, and thus we may assume that Pr[C] ≤ 1/n,
which implies that q ≥ n/(24e) = Ω(n). Hence, the claim.

Observe that for the case of known n, we obtain an essentially tight bound

of 2Θ̃(n) on the needed power range.

Remark 2. We note that a construction can be given in the Euclidean plane that
achieves the same result but with slightly weaker power tradeoffs. It consists of
n/2 well-separated node-pairs that are internally close. It, however, does not
avail itself to easy generalizations to protocols with greater number of rounds,
and is therefore omitted.

5 Trading Time for Power Range

In this section, we explore how much the power range can be reduced by in-
creasing the round complexity. We present a multi-round protocol that requires
limited power range and derive a lower bound on the power range required by
any t-round leader election algorithm, for t ≥ 2.

5.1 Multi-Round Protocol

When a smaller power range is available, we can give a protocol that uses a
larger number of rounds.

Our multi-round algorithm simply repeats the 2-round algorithm t times, for
a given number t ≥ 1, but using a slower-growing power function. Namely, we
change the ID-selection function to gt(k) = 2kk3t+1, and the power function to

ft(IDv) = P · IDγ(IDv)
1/t

v . After each round-pair repetition, each competitor v
updates its leaderv value to the largest among those heard so far.

First, we observe that it suffices to succeed in one of the round-pairs.

Observation 1 If, in some round-pair, all receivers hear from a particular node
v, and the senders all get informed of v as a leader, then the algorithm success-
fully terminates with v as leader.

Proof. After this round-pair, all nodes have leaderv value set as w. Thus, all
broadcasts that follow use w for the value of leaderv.

Let U = n1/t. Suppose we can guarantee that the failure probability of an
individual round-pair is at most 1/U . Then, the probability that all t round-
pairs are unsuccessful is 1/U t = 1/n, as desired. Thus, it suffices to ensure
that the failure probability of each round be at most 1/(2U). Let Z be the set
of competitors with the highest kv value, and recall that |Z| ≤ 8 log n with
probability greater than 1− 1

8n , by the same argument as in Lemma 1. Observe
that for success, it suffices that one node transmits with at least ncα|Z| ≤ ncα+1

times the power of any other transmitting node, as argued in Lemma 3. A node
w with the highest ID will satisfy IDγ

w ≥ ncα+1, as g(kw) ≥ g(k1) (w.h.p.) It

also holds that ID
1/t
w ≥ n1/t.

Thus, what remains is to argue the counterpart of Lemma 2.
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Lemma 4. In a given round, with probability at least 1− 1/(2U), some node w
receives an ID such that (IDw)1/t ≥ (IDv)

1/t − 1, for all other nodes v.

Proof. Let Z be the set of competitors with the largest kv-value. Recall that
IDs are allocated uniformly at random, and for nodes in Z, the range is of size
at least gt(k1) = 2logn−log logn−2(log n− log log n− 2)3t+1 ≥ n

8 logn ( logn
2 )3t+1 ≥

1
23t+1n log3t n, for large enough n. The probability that a given pair of nodes u, v

in Z receive nearly equivalent IDs, with |(IDu)1/t − (IDv)
1/t| ≤ 1, is at most

gt(k1)−1/t ≤ 2
n1/t log3 n

. Thus, the probability that some two nodes in Z receive

nearly equivalent IDs is at most(|Z|
2

)
gt(k1)1/t

≤ 23 · 82 log2 n

n1/t log3 n
<

1

2n1/t
,

for sufficiently large n.

The correctness of the algorithm follows from the above observations.

Theorem 5. For each number t = O(log n/ log log n), there is a 2t-round algo-

rithm using a power range 2n
O(1/t)

that correctly elects a leader, w.h.p.

5.2 Lower Bound for Multi-Round Protocols

Theorem 6. Any t-round leader election algorithm in the SINR model running
correctly w.h.p. requires a power range 2Ω( t−1

√
n), t ≥ 2. This holds even if the

nodes know n, the number of nodes in the network, and the nodes are located in
a unit metric (where all distances are equal).

Proof. We consider n nodes located in a unit metric space. In this setting, after
any round of the algorithm either all listening nodes receive a message, or no
progress is made (assuming β ≥ 1). Since the nodes do not operate full-duplex,
any leader election algorithm requires at least two rounds, one round for the
winner to broadcast its message, and one round to be informed of the victory.

Let A be a t-round leader election algorithm in the SINR model that runs
correctly with probability greater than 1 − 1/n. Since at least two rounds of
successful communication are needed, Algorithm A fails when no listening node
receives a message during the first t− 1 rounds. This happens with probability∏t−1
r=1 pr, where pr denotes the probability that no listener receives a message in

round r. Since algorithm A succeeds with probability greater than 1− 1/n,

1

n
>

t−1∏
r=1

pr.

Now, consider round r. Let q and C be as in Theorem 4. We can show by
a similar argument that Pr[C] ≥ 1

12e·q , assuming β ≥ 2. No listener receives a

message in round r when C holds, and thus Pr[C] ≤ pr, which implies that

q ≥ 1

12e · pr
.
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It follows that 1/n ≥ ( 1
12eq )t−1, and therefore q ≥ t−1

√
n/(12e) = Ω( t−1

√
n).

Thus, algorithm A requires a power range 2Ω( t−1
√
n).

6 Conclusions and Acknowledgments

We have shown that power control can yield the ultimate speedup for leader
election in the SINR model. This is thanks to the capture effect, which is the
crucial property in which SINR differs from graphs-based models.

It would be exciting to see these techniques applied more widely. Multi-hop
settings and more restricted power ranges are natural directions to examine, as
well as problems beyond leader election. In general, the value of power control
and the capture effect is still not fully understood.

We thank Hsin-Hao Su and Nancy Lynch for helpful comments and discus-
sions.
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